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The results of the numerical calculations of oscillations of the liquid column free surface under the action on
it of axial vibration in zero gravity are presented. On the basis of these calculations, an analytical model of
the surface standing wave named the inertial-capillary wave has been developed. Comparison of the analytical
calculations with the data of the numerical calculations and the experiment performed in microgravity under
the TEXUS program has been made. The numerical study of the thermocapillary convection stability in the
presence of inertial-capillary waves has shown that the change to the oscillation regime is very sharp upon
reaching certain values of the vibration frequency and amplitude. The heat-and-mass transfer in growing
semiconductor crystals by the floating-zone method in zero gravity under the action of vibration with allow-
ance for the surface waves has been investigated. The possibility of measuring vibrational accelerations on-
board space vehicles by means of oscillations of the liquid-column free surface are discussed.

Introduction. The behavior of a liquid with free boundaries in zero gravity has been a topic of enhanced in-
terest since the beginning of spaceflight. This is due to not only the unusual form of fluid volumes and the specific
feature of their motion in zero gravity, but also their important technical applications. The problem of prolonged stor-
age of liquids, especially low-boiling ones, the motion and removal of gas inclusions from the liquid, the crystal-
lization of a liquid having a free boundary — these are questions that cannot be resolved on the basis of the
experience gained in hydromechanics. Of particular interest are dynamic processes, in particular, those connected with
the oscillations of free surfaces under the action of the rotary motion of spacecraft and vibrations existing on board.

The waves on the free surface of a liquid filling a part of a cylindrical volume were investigated by the nu-
merical simulation method in [1, 2] under the action of uniform residual accelerations of gravity, rotation, and a low-
frequency vibration. The spectra of the surface waves were obtained. The behavior of the free surface of liquid
hydrogen in a cylindrical vessel at different evolutions of the gravitational vector was considered in [3]. The calcula-
tions revealed the effect of a sharp burst on the free surface (geyser effect). These works lack generalization of the
results obtained.

The behavior of the free surface of a fluid cylindrical volume with solid faces under the action of axial vi-
bration in practically zero gravity was investigated in more detail in [4–9]. This problem was posed in connection with
works on growing monocrystals by the floating-zone method onboard spacecraft. The analytical models of vibration-in-
duced free surface oscillations [4–6] assumed that the standing wave consisted of one period and oscillated with the
applied vibration frequency and that as soon as the vibration frequency reached the natural frequency of the liquid col-
umn, a sharp, resonance increase in the standing-wave amplitude occurred. Experiments in microgravity were per-
formed on sounding rockets (TEXUS project), on orbital spacecraft (projects SL-1, SL-D1, and SL-D2) [7, 8], and on
a release tower [9]. However, the experiments in [7, 8] were performed in a narrow range of influencing parameters,
which made it impossible to reliably verify these analytical models. In [9], it is noted that no resonance increase in
the strain amplitude of the free surface under the action of vibration along this boundary at frequencies close to the
expected resonance (natural) frequencies were observed. Thus, it may be concluded that the phenomenon of standing
surface-wave formation in fluid volumes under the action of vibration in zero gravity has not been studied thoroughly
enough.
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The numerical investigation of the action of the axial vibration in zero gravity on a liquid column bounded
by solid face surfaces was carried out by us under the "Science–NASA" program within the framework of an agree-
ment between NASA and the Russian Space Agency (project TM-7) [10, 11]. The calculations were made under the
action of one frequency from a wide range of frequencies, under the simultaneous action of two different frequencies,
and under the impact action on the liquid column. It was found that both one and several lengths of the standing wave
could be present on the free surface. Oscillations of the standing wave could be executed at a frequency equal to the
applied vibration frequency or smaller than the latter. Under the action of two frequencies, the low frequency was de-
termining and the high frequency distorted the wave form, creating a "ripple." The data obtained by us in numerical
calculations enabled us to proceed to the construction of a theory of standing waves in zero gravity.

Formulation of the Problem of Numerical Investigation. To understand the results of numerical calculations
and construct a theory of surface waves in zero gravity, we present the mathematical model for numerical investiga-
tion, which was described in the reports on project TM-7 and briefly expounded in [10, 11].

Let us consider a liquid column of radius R and length l bounded at the faces by solid surfaces. It is assumed
that the wetting angle of the faces is 90o, i.e., in zero gravity the vibration-unperturbed lateral surface is a smooth cy-
lindrical surface. Under the action of axial vibration of frequency f the liquid column is moving as a unit, i.e., the
length L is invariable. To determine the free surface motion, we use the VOF (volume of fluid) method [12]. The
point of this method is that to describe the boundary one uses a variable, let us call it G, whose value is equal to
unity at any point occupied by the liquid and zero at points where it is absent. The mean value of G determines the
fractional volume of the cell occupied by the liquid. Cells with a value of G between zero and unity contain a free
surface. The normal direction to the boundary is that in which the value of G changes most rapidly. Since G is a dis-
crete function, its derivatives are found numerically and are used to define the gas–liquid boundary and the normal to
the boundary. The time dependence of the value of G is defined by an equation in dimensionless variables of the form

 ∂G ⁄ ∂τ + Reω [∂ (Gu) ⁄ ∂r + ∂ (Gv) ⁄ ∂z + Gu ⁄ r] = 0 , (1)

to which ordinary Navier–Stokes equations are added in projections on the axes r and z for a viscous incompressible
liquid flow in dimensionless form. We write the equations for the coordinate system moving along the z-axis with a
vibration frequency:
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therefore, in the equation of motion along the z-axis (4) a term with a vibrational acceleration appears.
In writing (1)–(4), as scales for the linear sizes, velocity, time, and pressure, we used the parameters R, ν ⁄ R,

R2ν, and ρν2 ⁄ R2, respectively, and the following boundary conditions: on the solid faces

z = 0 ,   z = L ,   u = 0 ,   v = 0   (liquid  adhesion  condition) . (5)

On the free surface given as a function of height r = ξ(z), the following conditions are fulfilled:
absence of shear stresses
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condition of equality of normal stresses on a curvilinear boundary
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For an arbitrary curved line on a plane the following relation is valid:
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Here ξz and ξzz are the first and second derivatives with respect to z of a curvilinear surface ξ(z).
The kinematic condition on a deformable free surface is of the form

u = 
∂ξ
∂τ

 .
(9)

For approximation of the system of equations (1)–(4), the so-called donor–acceptor method is used [13]. In
the calculations, we used a uniform mesh. The calculation algorithm was tested on the known model problems on liq-
uid flow in a pipe with a constant cross section and the liquid column spreading upon inclusion of gravity, taken from
[13].

Results of the Numerical Calculations of Surface Waves. Figures 1 and 2a present some of the results of
the numerical calculations of the problem on liquid-column free-surface oscillations in zero gravity (g = 0) under the
action of an axial vibration consisting of one frequency. At vibration parameters Reω = 10 and Ω = 10 on the side
surface of a liquid column of length L = 1 one standing wave is formed (Fig. 1a), which oscillates with an applied
vibration frequency Ω = 10 (Fig. 1b). With increasing vibration frequency and rate (Reω = 30, Ω = 30) the standing
wave at a liquid column of length L = 2 has three periods (Fig. 1c) and also oscillates at the vibration frequency (Fig.
1d). Figure 2a shows the liquid oscillation at point z = L /2, where the nodal point of a standing wave consisting of
one period at the length L = 2 is situated. Oscillations occur at a frequency of Ω = 50, whereas the applied vibration

Fig. 1. Profiles of the standing wave (a, c) and the free surface oscillation (b,
d) at points z = L/4 (b) and z = L/6 (d). Kσ = 3260. Reω = 10, Ω = 10 (a);
Reω = 30, Ω = 30 (c).
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frequency is equal to 200. Under the action on the liquid column of an impact, whose spectrum consists of two fre-
quencies, first chaotic decaying oscillations of the free surface are observed, which change to oscillations at one fre-
quency corresponding to the natural frequency of the liquid column (Fig. 2b).

New Mathematical Model of Inertial-Capillary Surface Waves. The results of the numerical calculations
enabled us to proceed to construct a mathematical model of surface waves excited by vibration in zero gravity. First
of all, note that during reciprocating motion of the liquid column as a unit, two forces are acting on it: capillary ten-
sion and inertia. The latter can be called a force conventionally, since it cannot be expressed in terms of physical pa-
rameters and included in the balance of forces. The fluid motion on the free surface is due to the surface-tension force
and is determined in terms of the deformation rate under the action of the capillary forces. For the motion of the free
surface to be harmonic throughout the time of action of vibration, two conditions should be met.

According to the first condition, the phase velocity of the standing wave should be not lower than the vibra-
tion rate vσ ≥ vvibr. It can be fulfilled by decreasing the length of this wave, since the phase velocity in the standing
capillary wave increases with increasing length of the wave. This means that a free surface of length l should contain
as many wave periods as are needed for this condition to be fulfilled.

The second condition is associated with the notion of natural frequency of the liquid column fe. If the vibra-
tion frequency is larger than the natural frequency of the liquid column, then the standing wave oscillates with a fre-
quency lower than the vibration frequency an integer number of times, i.e., fe = fvibr/m, where m = 1, 2, 3, ... . This
phenomenon is depicted in Fig. 2a. The phase capillary velocity vσ D (σ ⁄ ρR)1 ⁄ 2 [14]. Here R is the characteristic size
for the surface wave. The proportionality coefficient is determined by the geometry, and, for example, in the case of
a plane one-dimensional wave it is equal to (2π)1

 ⁄ 2. Knowing the phase velocity and the length of the free surface,
one can calculate the natural frequency of the fluid volume.

Using the calculated data on decaying oscillations of the free surface under an impact (Fig. 2b) and the above
functional relation for vσ, we obtained the expression for the dimensionless natural cyclic frequency depending on the
liquid column length at n = 1:

Ωe = 2.732Kσ
1 ⁄ 2L

−3 ⁄ 2 , (10)

which can also be used for calculations with n ≠ 1. In this case, instead of L we put L/n.
Using (10), the phase velocity in the standing capillary wave can be written in the dimensionless form

Vσ = 
2.732

2π
(Kσn ⁄ L)1 ⁄ 2 . (11)

The first condition written above in dimensional variables is, in dimensionless form:

Vσ ≥ Reω . (12)

Fig. 2. Free-surface oscillations at point z = L/2 (a) [Reω = 3.12, Ω = 200, L
= 2] and at point z = L/4 under impact action (b) [Reω1 = 10, Ω1 = 300,
Reω2 = 20, Ω2 = 480, L = 1].
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The data of the numerical calculations (Fig. 1a, c) show that the standing wave is well described by a
sinusoid. Let us write the equation for the standing wave in dimensionless form at any number of wave periods n on
the length L:

ξ ⁄ δ = sin (2πzn ⁄ L) cos Ωτ . (13)

To determine the standing-wave amplitude δ, make the following observation. Oscillations in the standing
wave permit visualizing the kinetic-to-potential energy conversion. At the instant the maximum wave amplitude is at-
tained the radius rate of motion of the wave is equal to zero (minimum kinetic energy of such a motion), and the po-
tential energy created by the surface tension is maximum. At the instant the side surface becomes smooth (ξ(z) = 0)
an inverse ratio of these energies takes place. The energy for sustaining a continuous vibrational process is supplied
due to the vibration from the outside. Thus, the establishment of the relation between these energy-balance components
will permit determination of the standing-wave amplitude δ.

Let us take the surface potential energy difference per unit of length of the liquid column to be equal to the
vibration energy transferred from the faces to the flowing liquid layer d. Let us construct the relation for the general
case where the liquid column length has room for n periods of the standing wave:

(nS1 ⁄ 2
 ⁄ L − 1) σ = 0.7dρa

2ω2
 , (14)

where S1 ⁄ 2 is a surface created by the rotation of one-half of the standing wave, i.e., by a curve segment R + δ sin
(2πnz ⁄ L), about the cylinder axis; 0.7 is the coefficient that appeared upon averaging of the rate over the vibration pe-
riod.

After the calculation of the surface integral we obtained the relation for determining the standing-wave ampli-
tude:

(1 + q
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2
 Kσ

−1
 . (15)

Since we failed to find suitable tables of the McRobert E-function [15], in calculating the surface area in ex-
pression (14), we replace half of the sinusoid by half of an ellipse with a large axis equal to half of the standing wave
L/(2π) and with a small axis equal to δ. Then

E [(1 − (4nδ ⁄ L)2)1 ⁄ 2; π ⁄ 2] = 1 + 0.7 (d ⁄ R) Reω
2

 Kσ
−1

 . (16)

The unperturbed part of the liquid of radius (R–d) under vibration moves as a solid body. Only in the layer
d is the vibration energy transferred to the liquid oscillation. If we estimate this layer thickness using the relation for
the boundary layer at the vibrating wall d ⁄ R C 5(2 ⁄ Ω)1 ⁄ 2 [16], then the last expression can be written as

TABLE 1. Comparison of the Analytical Calculations of the Standing Wave Parameters with the Numerical Calculations and
Experiment

Reω Ωvibr L n δ Ω n Vσ Ωe δ Ω
Numerical calculation Analytical calculation

10 10 1 1 0.0358 10 (m = 1) 1 24.83 156 0.03 10 (m = 1)

30 30 2 3 0.098 30 (m = 1) 3 30.4 286.7 0.0954 30 (m = 1)

3.12 2.09 2 1 0.013 50 (m = 4) 1 17.6 55.15 0.0126 50 (m = 4)

Experiment [8]

6.974 2.09 5.66 1 0.03 2.09 1 10.44 11.56 0.0358 2.09 (m = 1)
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E [(1 − (4nδ ⁄ L)2)1 ⁄ 2; π ⁄ 2] = 1 + 5 (a ⁄ R) Reω
3 ⁄ 2 Kσ

−1
 . (16a)

The argument of the function E includes the sought parameter δ and is determined by the table value of the ordinate
calculated by the given parameters in the right-hand side of (16) or (16a).

The relations obtained have restrictions on the side of small vibration frequencies when the thickness of the
perturbed liquid layer d becomes larger than the cylinder radius. On the side of large vibrations the approximation is
restricted to the use of the incompressible fluid model. Real vibrations existing onboard spacecraft or vibrations that
can be created artificially for controlling the liquid flow are within these limits. The calculations by relation (16a)
show that when the number of periods of standing waves on the liquid-column length increases, the wave amplitude
decreases in the same proportion. Proceeding from the acting effects, the standing waves under consideration can be
called inertial-capillary surface waves.

Table 1 compares the data of the numerical calculations and the experiment described in [8] with the calcu-
lations carried out using the constructed mathematical model and the approximate relation (16a). It is seen that there
is a good agreement in the region of the above-mentioned restrictions. Even in the region of very low frequencies (nu-
merical calculation with Ω = 10, Reω = 10 and experiment [8] with Ω = 3.14) for which the above condition of
model limitation is not fulfilled, analytical calculations yield good results. In these cases, we assumed d = R and used
relation (16). The most encouraging fact is that the proposed mathematical theory of inertial-capillary standing waves
correctly gives the number of periods of the standing wave and the vibration frequency in the case where this fre-
quency differs from the applied oscillation frequency. The proposed mathematical model has no room for the reso-
nance growth of the wave amplitude near the natural frequency of the liquid column. This fact was noted in the
experiment performed on the release tower in [9].

Figure 3 gives the results of the calculation by the proposed mathematical model of the standing-wave ampli-
tude for a gallium arsenide (GaAs) liquid zone of radius R = 1 cm and length L = 2. The frequency dependences of
the wave amplitude for three fixed vibrational accelerations are given. For the vibrational acceleration g = 0.5 cm/sec2,
on the free surface a standing wave consisting of one period (n = 1) can always be present. For the other two accel-
erations in the region of low frequencies the number n can also be greater than one. These places are marked with
arrows. In the region where n > 1, the curve for gvibr = 2 cm/sec2 is extended by dots to show what value δ would
have at n = 1.

Heat-and-Mass Transfer under Crystallization of Liquid by the Floating-Zone Method. It is tempting to
estimate the action of liquid-column free-surface oscillations on the thermocapillary convection stability and the crystal
growth by the floating-zone method in zero gravity. To do this, it is necessary to add to Eqs. (2)–(7) the heat and
impurity transfer equations

Fig. 3. Standing-wave amplitude in liquid gallium arsenide as a function of the
vibration frequency at the following values of the vibrational acceleration: a)
gvibr = 0.5; b) 1; c) 2; d) 2 cm/sec2, at n = 1. L = 2, R = 1 cm.
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Equations (3) and (4) neglect the static lift associated with the continuously acting acceleration of gravity (since g =
0 is assumed) and the vibrational convection.

The boundary conditions for them are as follows:
z = 0 (crystallization boundary):

u = v = 0 ,   θ = 0 ,   − 




∂C

∂z



 s

 = Recr Sc (1 − kCs) ; (19)

z = L (melting original crystal):

u = v = 0 ,   θ = 0 ,   C = 1 ; (20)

r = 0 (symmetry axis): the first derivatives of all parameters are equal to zero;
r = ξ(z) is an oscillating free boundary, u = 0, v(z, τ) is given in accordance with the solution of (15) or

(16), (16a)
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where the heat flow from the outside to the liquid unperturbed zone is determined as an exponent with a maximum
in the cross section z = L/2:

Fig. 4. Structure of the stream (isolines of the stream function ψ) without vi-
bration (a) and with vibration (b, c). Ma = 1265, Pr = 0.023; Ω = 464.1 (f =
0.26 Hz), δ = 0.0097 (b); Ω = 392.7 (f = 0.22 Hz), δ = 0.012 (c).
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This function well imitates the boundary condition in the floating-zone method.
The investigation of the influence of free surface oscillations on the liquid flow and the heat-and-mass transfer

was begun by studying the thermocapillary convection stability. As one can judge from the publications, such a prob-
lem was not considered earlier. There are works on the influence of a stationary curvilinear surface on the thermo-
capillary convection [17, 18]. The flow in the vicinity of a free surface due to the surface-tension gradient is an
example of a shear flow which, by definition, is absolutely stable. In closed fluid volumes having not only a free
boundary but also a solid one, such an absolute stability is impossible. It is even more interesting to know how such
a flow will be influenced by a perturbation in the form of a variable velocity acting normally to the free surface.

The structure of the flow (current function isolines) without free surface oscillations and with such oscillations
at various values of the oscillation parameters are shown in Fig. 4 at one and the same Marangoni number. The struc-
ture (Fig. 4b) corresponds to the vibration level at which there are no parametric oscillations in the liquid, although
the character of the flow has changed considerably compared to the flow without vibration (Fig. 4a). A small change
in the vibration frequency at the same vibrational acceleration leads again to a change in the structure of the flow
(Fig. 4c). The instantaneous structure of the flow at a maximum of the free surface deformation rate when this surface
is flat is shown. All parameters (velocity, temperature, concentration) oscillate. The change from the stationary regime
of convection is very sharp, which is seen in Figs. 5 and 6. Figure 5 shows the change in the relative radial nonuni-
formity of the phosphor impurity distribution in silicon depending on the vibration frequency at several fixed vibra-
tional accelerations. In the region of large vibration frequencies, this parameter of the impurity-distribution nonunifor-
mity is almost the same as without vibration (upper horizontal straight line). In the transition region, the radial nonuni-
formity sharply decreases, but simultaneously strong oscillations arise. In Fig. 5, on the left of the transition boundary,
the time-averaged values of the parameter ∆Cs

 ⁄ Cs are shown. The relative oscillation amplitudes of the concentration
parameter and temperature at a point near the crystallization boundary (z = 0.02, R = 0.5) are shown in Fig. 6. The
vibration regime at which the relative oscillation amplitude reaches 1% is determined by us as a boundary of the
change to the oscillation regime of convection. The dependence of the vibration frequency corresponding to this
boundary on the vibrational acceleration is shown in Fig. 7 for silicon at fixed sizes of the liquid zone and the Ma-

Fig. 5. Relative radial segregation of the phosphor impurity in silicon as a
function of the vibration frequency at the following values of the vibrational
acceleration: 1) gvibr = 0.5; 2) 1; 3) 1.5; 4) 2; 5) 0 cm/sec2. Ma = 1265, Pr =
0.023, Sc = 5, k = 0.35, Recr = 0.1, R = 1 cm, L = 2, A = 0.8, B = 0.3. f,
Hz.

Fig. 6. Relative radial segregation ∆Cs
 ⁄ C

__
s (1, 2) and relative oscillation ampli-

tude of temperature θ (0.5; 0.02) (3, 4) of the phosphor impurity in silicon as
a function of the vibration freqency at two values of the Marangoni number: 1,
4) Ma = 1265; 2, 3) 505. Pr = 0.023, Sc = 5, k = 0.35, Recr = 0.1, R = 1 cm,
L = 2, A = 0.8, B = 0.3, gvibr = 1.5 cm/sec2. f, Hz.
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rangoni number. In this case, the transition boundary very weakly depends on the thermocapillary convection intensity.
For instance, for the vibrational acceleration equal to 1.5 cm/sec2, R = 1 cm and L = 2, when the Marangoni number
is changed from 500 to 2000, the vibration frequency at which the transition to oscillations is made changes linearly
from 0.23 to 0.24 Hz. Note that all parameters of the vibration (frequency, amplitude, acceleration) and standing-wave
amplitude for which the calculations have been performed are related by the analytical solution.

Figure 8 gives examples of temperature oscillations in the vicinity of the crystallization boundary at various
combinations of dynamic parameters. It should be noted that besides the applied vibration frequency other frequencies,
the number of which can be very large, are also present in the spectra (Fig. 8c). If the thermocapillary convection sta-
bility is disturbed because of the large fluid velocity at large values of the Marangoni number in the absence of vi-
bration, then the oscillations near the stability boundary are harmonic (Fig. 8d). In this case, the oscillations of
temperature and other parameters sharply differ in amplitude and spectra from the above examples when stability is
lost due to the action of the surface standing waves. This is clearly seen from comparison of the data given in this
figure.

Fig. 7. Vibration frequency at the boundary of transition to the oscillation re-
gime of convection as a function of the vibrational acceleration for silicon. Ma
= 1265; L = 2, R = 1 cm, A = 0.8, B = 0.3. f∗ , Hz; gvibr, cm/sec2.

Fig. 8. Temperature oscillations in the liquid near the crystallization boundary
(r = 0.5, z = 0.02) in the regime of oscillation convection [a–c) with vibration;
d) without vibration] at various Marangoni numbers: a) Ma = 505 (Ω = 392.7,
f = 0.22 Hz, δ = 0.012); b) 860 (R = 1 cm, f = 0.1 Hz, gvibr = 1 cm/sec2); c)
1265 (R = 1 cm, Ω = 267.8, f = 0.15 Hz, δ = 0.018, gvibr = 1.5 cm/sec2); d)
2200 (L = 2). Pr = 0.023, A = 0.8, B = 0.3.
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Discussion. Based on the data of the numerical calculations, we have constructed a mathematical model of
standing inertial-capillary waves formed on the free surface of a liquid cylindrical column under the action of axial vi-
bration when the liquid column is moving as a unit. This type of surface waves differs from the well-known capillary
waves which are excited when a solid wall placed in a liquid oscillates. The inertial-capillary waves have some anal-
ogy with the Faraday waves revealed by experiment in 1831. The Faraday waves also oscillate with a frequency twice
as low as the applied vibration frequency. Proceeding from the mechanism of the appearance of Faraday waves, they
can be named, by analogy with the term inertial-capillary waves introduced by us, the inertial-gravitational waves.

The calculations performed have shown that vibration can strongly influence the flow and the heat-and-mass
exchange in growing crystals by the floating-zone method at certain vibration parameters and physical properties of the
liquid. The semiconductor materials usually used in investigations on material science on space vehicles have large val-
ues of the parameter Kσ. For example, at R = 1 cm for silicon Kσ = 2.3⋅107 and for gallium arsenide Kσ = 3.9⋅106.
For such liquids, vibrations existing onboard space vehicles in the normal regime of flight create on the liquid surface
standing waves with very small amplitudes. In this case, the standing waves should not substantially influence the
process of crystal growth. Of course, this conclusion assumes that crystals are grown in extreme situations: dynamic
operations with the vehicle, intensive activity of the crew near the experimental facility, etc. However, if experiments
are performed with materials (optical, biological, e.g., aqueous solutions of proteins, etc.) having much smaller values
of the parameter Kσ, then in this case the existing vibrations can be dangerous.

The small values of the parameter Kσ for some liquids (water, glycerol and its water solutions, silicon oils)
make them very sensitive to vibrations. These liquids can be used for measuring vibrational accelerations onboard
space vehicles, especially in the range of frequencies smaller than 0.1 Hz. The existing accelerometers have a small
accuracy in this frequency range. Figure 9 shows the dependences of standing-wave amplitudes on the vibration fre-
quency for a silicon oil liquid column (ν = 1⋅10−5 m2/sec, σ = 0.02 H/m, ρ = 998 kg/m3) for three vibration ampli-
tudes. Arrows point to points where the standing-wave oscillation frequency changes (coefficient m). The kinks on the
curves correspond to the points where the standing-wave amplitude changes with changing number of wave periods
(change from n = 1 to n = 2, and so on). In this example, the vibration frequencies and accelerations used by us for
the calculation are close to those which exist on the International Space Station (ISS).

Using relation (16a), we can obtain an explicit relation between the standing-wave amplitude and the vibra-
tional acceleration:

gvibr = 0.447Rω2
Kσ

1 ⁄ 2Ω−3 ⁄ 4 [E (ε) − 1]
2
 . (23)

Vibrations on board are characterized by components on all three axes (although two of them dominate), and
the deformation of the liquid column under such conditions has a complex spatial form. The proposed method is not
suitable for such a situation. However, using a simple mechanical device, a vibrosuspension [19], one can reduce the
whole set of vibration frequencies to one equivalent frequency, which can be measured by means of the liquid column

Fig. 9. Standing-wave amplitude in the silicon oil liquid column as a function
of the vibration frequency at three values of the vibration amplitude: 1) a =
0.25; 2) 0.2; 3) 0.1 mm. R = 1 cm; L = 2 m, ν = 0.1 cm2/sec. f, Hz.
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and the above mathematical model. The results of the investigation presented show that the device called in [19] vi-
broprotective is not such, since it creates a higher vibration at one, and low frequency, which increases the negative
effect of vibration on the crystal growth.

The experiment on the action of vibration on the liquid column was included in 1998 in the program of
works on the Russian module of the ISS.

Conclusions. An analytical model of inertial-capillary waves arising on the free surface of a liquid column
under the action of vibration in zero gravity has been developed. The model has been tested by comparison with the
data of numerical calculations and the experiment performed in microgravity. Analysis shows that using this mathe-
matical model and a special vibrosuspension, one can measure the vibrational acceleration equivalent to the acting set
of vibration frequencies existing on space vehicles, including the ISS.

A program for numerical calculation of the heat-and-mass exchange in growing crystals by the floating-zone
method in zero gravity with regard for the standing surface waves has been developed. The boundary of transition to
the oscillating regime of thermocapillary convection and its dependence on the vibration frequency and vibrational ac-
celeration has been determined. A weak dependence of the transition boundary on the Marangoni number has been
shown. The program also permits calculations for the case where surface waves arise under crystal vibrations with a
small amplitude.

This work was supported by the INTAS under project INTAS-2000-0617.

NOTATION

A, B, dimensionless coefficients in (22); a, vibration amplitude, m; Ar = gR3 ⁄ ν2, Archimedes number; c, im-
purity concentration in liquid, kg/m3; C = c ⁄ c0, dimensionless concentration of impurity; D, diffusion coefficient of
impurity in liquid, m2/sec; d, thickness of the vibration-perturbed liquid layer, m; EMcR(π; γ), MacRobert function, di-
mensionless; E(x; π ⁄ 2), complete integral of the second kind, dimensionless; f, frequency, Hz; g, gravitational accel-
eration, m/sec2; G, portion of liquid in the calculation cell; l, liquid column length, m; k, equilibrium impurity
distribution coefficient; Kσ = σRρ−1ν−2, dimensionless capillary constant; L = l/R, dimensionless liquid column length;
Ma = −(∂σ ⁄ ∂T)R∆T/ρνχ, Marangoni number; m, ratio of the vibration frequency to the oscillation frequency of the
standing wave; n, number of standing wave periods at length L; p, pressure, Pa; P = pR2 ⁄ ρν2, dimensionless pressure;
Pr = ν ⁄ χ, Prandtl number; q = 2πnσ ⁄ L, parameter in (15); R, radius of unperturbed liquid column, m; R1, R2, radii
of principal curvature, m; r, z, cylindrical coordinates, m; Recr = νcrR ⁄ ν, dimensionless crystal growth rate; Reω =
αωR ⁄ ν, dimensionless vibration rate; Sc = ν ⁄ D, Schmidt number; x, parameter in the definition of the independent
variable of the complete elliptical integral of the second kind; T, temperature, K; t, time, sec; u and v, r and z, com-
ponents of velocity, respectively, m/sec; Vσ = 2.732/2π(Kσn ⁄ L)1 ⁄ 2, dimensionless capillary velocity; α, angle between
normals to a point on the perturbed free surface and to the surface of r = R; ∆T = Tmax − T0, characteristic tempera-
ture difference in the system, K; ∆Cs = Cs,max − Cs,min, radial concentration difference in the liquid; η, dynamic vis-
cosity, kg/(m⋅sec); ν, kinematic viscosity, m2/sec; ξ, deviation of the free surface from the unperturbed state, m; ρ,
density, kg/m3; σ, surface tension, N/m; χ, thermal diffusivity, m2/sec; ω, circular frequency, sec−1; Ω = ωR2ν−1, di-
mensionless circular frequency; ε = (1 − (4nδ ⁄ L)2)1 ⁄ 2, parameter in relation (23); γ = q(1 + q2)−1 ⁄ 2, parameter in the
argument of the MacRobert E-function; δ, standing-wave amplitude; ζ(y), relative oscillation amplitude of parameter y;
θ = (T − T0)/∆T, dimensionless temperature; τ = tν ⁄ R2, dimensionless time; ψ, dimensionless stream function. Sub-
scripts: 0, initial value; cr, crystallization; e, eigenvalue; max and min, maximum and minimum values; s, at the crys-
tallization boundary; σ, pertaining to the capillary effect; *, at the boundary of transition to oscillations; bar, averaging
over the crystallization boundary; vibr, vibration.
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